Android Wi-Fi RTT Locator (WRL) User Guide

Date: 28th June, 2023, Application V1.9, User Guide Rev 1.9

Introduction
Application Features
New in v1.2
New in V1.8
Getting Started
Install the Application
Options and Settings Menu
Performing a Positioning Experiment with Ground Truth
Configuration File Format
Explanation of Configuration File Records
Positioning Data Log File Format
Explanation of Log File Records
Data Log Analysis
Conclusion
References

—_— o =
©O© O N O0WNOO OGO A WWN=

NN
NN o

Introduction

The Android Wi-Fi RTT Locator (WRL) application is designed to demonstrate precise indoor
location with an accuracy of 1-2 meters. It uses the IEEE 802.11mc protocol for measuring the
time-of-flight of Wi-Fi packets between a phone and an Access Point (AP). As radio waves
travel at the speed of light (c¢), the measured time is converted to a distance by multiplying by c.
After estimating the distance to three or more Access Points at known positions, the phone can
calculate its own position using a process called multilateration. WRL is built around the Android
API for the 802.11mc protocol also known as Wi-Fi Round Trip Time (RTT), and is described in
the developer pages. A more complete explanation of the Android Wi-Fi RTT API, how you can
use it to calculate an accurate indoor position, and examples of its use were shown at Google
I0’18 and captured in this video. You can see an overview of the WRL application launch,
configuration, and positioning in this short video clip.

https://developer.android.com/guide/topics/connectivity/wifi-rtt
https://g.co/wifirtt/locator-demo

Application Features

WRL enables a user to automatically position a Wi-Fi RTT capable Android smartphone within
an area supported by IEEE 802.11mc capable Access Points, and display its position on a
floor-plan. It does this by requesting a configuration file (.csv) and a floor plan (.png) file. The
floor plan is overlaid onto Google maps shown on the application’s primary display; see Figure
1a. The floor plan’s geographic position is described in the configuration file, along with the
positions of the Access Points. You can provide predefined ground truth points to measure the
accuracy of the estimated position, along with a set of parameter values that are used to control
the app’s behavior. The configuration file is described in detail in Configuration File Format. In
addition, while the phone is positioning itself on the floor plan, this data is simultaneously logged
to a local file that the user can save for future analysis, after positioning has been stopped. Both
the floor plan view and the data log file are private to the user, and they can decide if, when, and
where it is stored, to respect user privacy.

11:00 @ LTE4 0100% 11:00 @ LTE4 0100%

Wi-Fi RTT Locator 00y H Wi-Fi RTT Locator 6/6 Q@

START RTT RESET GROUND LOG GROUND STOP RTT
POSITIONING TRUTH LOG TRUTH EVENT POSITIONING TRUTH LOG POINTA

RESET GROUND LOG GT AT:

Figure 1: a) The WRL application once configured b) WRL view while positioning

When positioning is active, the display will show the RTT position as a purple dot with a
translucent circle around it indicating the estimated standard error; see Figure 1b. Access points
are shown with a place marker. These markers are light blue to start with, but if discovered
through a Wi-Fi scan, will become dark blue. When the phone selects an AP to range to, the
color will turn green, and a blue ranging-line will be drawn from your position to the AP. If the
ranging protocol has a fault during this process, the AP color will turn red, until the next
successful ranging event, or dark blue again if it is no longer selected for Wi-Fi ranging.

Ground Truth (GT) points are used to evaluate the performance of the WRL application during
positioning, and compare the user’s estimated path with the actual path taken. GT markers are

shown as small red circles at the time the configuration file is loaded. When Start RTT
Positioning is tapped, the first GT point (circle) turns green. As you walk to that point and tap
the Log GT button, it turns grey and the next one on the GT path turns green. The data log
records these positions and timestamps for later processing. After the last GT point has been
recorded, you can Stop RTT positioning and will then be prompted to save the data log file to
a location of your choice.

New in v1.2

In v1.2, we added the ability to move between floors. The app uses the phone’s barometer
(when available), the number of RTT ranging errors, and the results of a recent Wi-Fi Scan, to
determine if the user has changed floor. If the user has switched floors, the app will start
scanning the APs on the new floor to determine if the user is on a known floor — i.e. a floor
specified in the CSV file (details listed below). If the floor is found, the new floorplan will be
displayed automatically, along with a toast message to alert the user. At that point, RTT ranging
resumes and will correctly show the user’s position on the new floorplan. Some additional
considerations are:

e For the map switching to work properly, the user must provide multiple overlays during
the overlay file selection process, and the overlay file names must match the strings
used to describe the floor in the config file (see the CSV configuration details below).

e The app will only show the APs and GT points associated with the overlay file currently
being shown. To see APs and/or GT points located on other overlays, level change
support must be enabled and the user needs to go to the level/location specified by that
overlay file. The app will detect the change and switch overlay files. At that time, it will
display only the APs and GT points associated with the new overlay.

e When the app decides to change levels, it will start ranging to the nearest APs
regardless of which floor they are on. This will be observed on the Ul as ranging-lines
that terminate without showing an AP icon — this indicates the AP is on another floor.

New in V1.8

In v.1.8, we added optimizations to make the navigation experience smoother and more
accurate. These options can be enabled in the configuration file.

e Wi-Fi scan optimization: This can be turned on if the AP channel frequencies are
known in advance. The frequencies are provided as a list of integers contained in a
parameter, or specified in each AP record. Once configured, the app will only perform

one Wi-Fi scan each time positioning is started, eliminating Wi-Fi Scans while
navigating.

Automatic calibration error removal: The app can now estimate the calibration error
automatically, without the need for manual correction. It uses a bounded running median
of estimated errors to reduce the effect of outliers. The size of the bounding window can
be set in a parameter.

Uses Location Configuration Information (LCl) when available: When 802.11mc
capable Access Points are configured to provide their own Latitude and Longitude, both
entries in the configuration file can be set to 0.0 degs, and the phone will automatically
use the locations provided by the Access Points delivered using the 802.11mc protocol.

Getting Started

To set up an accurate indoor location system, you need a scaled floor plan, along with precise
information about the positions of the Wi-Fi Access Point deployment. It is important to perform
the following steps as accurately as possible, as any errors will be reflected in the final accuracy
achieved by the WRL application.

Before you install and use the WRL application, you will need the following:

An Android Smartphone that supports Wi-Fi RTT (802.11mc): Any of the Pixel 4 to
Pixel 6 phone models [1] have this capability, and should be running an Android Q (10)
or a later OS.

A set of access points with IEEE 802.11mc capability: Google Wi-Fi 2016 or 2020 [2]
are recommended. Note: Once a Google Wi-Fi AP is configured using the corresponding
Google app, it will serve as a simple 802.11mc transponder, even with the internet
disconnected. Only mains power is then needed for deployment, which may be useful for
some locations with no Ethernet. Three APs are the minimum required to support an
indoor positioning system. A more-interesting deployment, in a larger building, would
perhaps use 6 or more APs; Google Wi-Fi can be purchased cost-effectively in 3-packs.
If a network with more than 6 APs is planned, it's recommended that you do not set it up
as a mesh. APs should be placed about 50 feet (15m) apart in roughly a grid pattern
extending to the outer walls of the positioning region.

A detailed floor plan (PNG format) of the building hosting your positioning system:
This is used as an overlay on Google Maps and provides the context for the RTT
estimated position. An example house floor plan is provided here. You will need to
determine the latitude and longitude of the SW and NE corner of the bounding box
containing your floor plan overlay, with the top-side facing North when positioned on
Google Maps. This process is best carried out using a laptop computer running Google
Earth Pro. Use these overlay instructions to position and scale your floor plan

https://g.co/wifirtt/example-house-floorplan
https://support.google.com/earth/answer/148099?hl=en

appropriately. You can determine the position of the SW corner by using the push-pin
tool positioned over the point. Google Earth displays the latitude and longitude of a point
(using six decimal places), which you can record in a spreadsheet for documentation.
Repeat for the NE Corner.

e The position in latitude and longitude (lat/Ing) of each AP in the system: Use the
Google Earth overlay you created for the floor plan earlier in this document to identify
and determine the lat/Ing of each AP using the push-pin marker tool. Use all six decimal
places provided by Google Earth to preserve the position accuracy. Record this in your
documentation spreadsheet, along with a unique name for each AP and its wireless
Media Access Control/Basic Service Set Identifier (MAC/BSSID) address. Next,
physically install your APs in the positions you identified on the floor plan, as high up as
possible, and at a similar height to each other. Make a note of this height in meters.

e Define a set of Ground Truth (GT) points: Repeat the earlier process, recording each
lat/Ing position with an identifying label. Labels should be sequential, such as P1, P2,
P3 ... or A, B, C... The positions of the GT points should be chosen so they are easily
identifiable in the building, and make it possible to walk in a straight line between each
pair. They should not be too far apart, so you can walk between them at approximately
constant speed. This is recommended so that for each estimated RTT position along the
path, there will be a corresponding interpolated GT position.

Before installing the application, it's recommended that you turn off Wi-Fi scan throttling in the
Android settings menu. This can be found under Developer Options > Networking > Wi-Fi scan
throttling).

Install the Application

Now you can install the application from the Google Play Store, and copy the example
configuration file to your computer. Make a copy of this file, and rename it something like
“‘my-house.csv”, and then customize its content for your system.

The configuration file is a text file using a comma separated variable (csv) format. Blank lines
are allowed, and comments can be added to help organize the information by using a ‘#
character at the beginning of a line. The record types used in the file are described in the
Configuration File Format; also see the overview in Table 1.

Record Type Meaning Record Type Meaning

BD Building GT Ground Truth

https://g.co/wifirtt/example-house-config

AP Access Point PARAM Parameter

Table 1: The principal record types used in the configuration file (.csv)

You can use the example file as a template and replace the BD, AP, and GT records to match
your own system. The PARAM values provided in the example can be left as they are for now,
as they are general enough for an initial deployment.

When you start the WRL application, give it the requested permissions. You will then be
prompted to load a configuration file. The easiest way to proceed is to store the configuration file
(.csv) in a folder on your Google Drive and navigate to it. You can also place your floor plan
(.png) file in the same folder, as you will be prompted to load it next.

If there were any formatting errors in the configuration file, you will get a warning pop-up
message. Correct these issues before proceeding; compare your file with the provided template
and the information that follows to confirm the correct format.

Next, tap the Start RTT positioning button. On tapping the button, a Wi-Fi scan is initiated. The
Wi-Fi icon at the top right will turn from black to green during scanning, and back to black
afterwards. When complete, if there are three or more 802.11mc APs discovered, the floor plan
will show your position with a purple dot. It will also draw blue-lines from the estimated position
to the APs that are being used for ranging, to help you understand how it's working. The Wi-Fi
scans will continue at a rate determined in the configuration file, defaulting to every 15 seconds.
Once all APs defined in the configuration file are discovered, the Wi-Fi Scan icon turns blue (the
fraction discovered is also shown) and scanning stops. If you are setting up a large positioning
system (greater than 20 APs) walk around the area until all APs have been discovered so that
positioning can proceed without any scan interruptions. The Wi-Fi Scan-icon will turn red when
the scan cannot find any of the APs listed in the Config file.

When you Stop RTT Positioning, the application prompts you to save the positioning data log
file for later analysis. If you decline, this data will be deleted the next time you start positioning.

Options and Settings Menu

WRL has an options menu in the top right corner, indicated by three vertical dots. This allows
you to modify the configuration, either clearing the most-recently-loaded configuration file or
loading a new one. After requesting to load a new configuration, you will be prompted to select a
new configuration file (.csv) and floor plan (.png), similar to the process at startup. This allows
you to run the app in a variety of buildings, and select the corresponding files in each case.

Other menu options allow you to see the application build-date, version, licensing information,
and parameter values successfully loaded from CSV files. There is also a settings option that

provides a sub-menu to control features of the application that can be set easily from the user
interface, rather than in the configuration file at startup:

e Set Scanning Period (secs): This is the Wi-Fi scan period. A scan takes about two
seconds (depending on the phone type), and RTT positioning cannot occur during this
time. You can adjust this time (overriding the setting in the configuration file) to suit your
experiments. Note: Once all APs have been discovered, Wi-Fi scans are disabled for the
application. A potential strategy is to set a short Wi-Fi scan period, such as every 10-15
seconds, so that all the APs are discovered as soon as possible.

e Set Ranging Period (secs): This is the time between calculating Wi-Fi RTT positions.
For most smartphones, the fastest rate of positioning is about 3Hz, so the shortest
period would be 0.33 seconds. Setting it to a smaller value will likely have no effect, but
you can set much longer ranging periods for some types of experiments.

e Android Fused Location Provider (FLP) Location (checkbox): If you mark this
checkbox, the app shows the FLP position, with the traditional blue dot and translucent
blue error-circle, on the same floor plan as the RTT position purple dot, and the error
circle. This allows you to compare raw RTT position accuracy against FLP RSSI
positioning accuracy, to see the improvement.

e Camera Tracking (checkbox): If you mark this checkbox, the map/floor-plan
automatically pans as you move, to keep your position in view as you walk through the
building.

e Image Overlay (checkbox): When this checkbox is marked (the default), your overlay
floor-plan will show up on the app’s Google Maps view. When unset, the floor-plan is
hidden. This can be useful to temporarily see features hidden by the overlay that are on
the underlying map.

Performing a Positioning Experiment with Ground Truth

Once RTT positioning is underway, you can see the estimated position change in real-time as
you move around the building. If you want to characterize the accuracy of the estimated path,
you can use the Ground Truth (GT) logging feature.

Figure 2: Two Ground Truth points already selected (grey), and the third highlighted green.

To begin an experiment, you must have predefined a set of GT points in the configuration file.
While positioning, you may then walk between the Ground Truth (GT) points in order, and at
constant speed, tapping the LOG GT <label> button at each point, as shown in Figure 2.

Note: Identify the point in your actual building, rather than where the WRL app indicates you are
on the floor plan before you tap the button. In some cases the position may be clear, such as
the intersection of two hallways, but others GT points may be less clear. Purchase some small,
sticky labels that you can attach to the floor to ensure you walk over the same exact GT point
for each experiment you carry out.

When the last GT point has been logged, tap the Stop RTT Positioning button to stop the
experiment. You are asked to save the log file. It's recommended that you save this in another
Google Drive folder to make it easy to access and analyze at a later time. This also makes it
easy to read the data into Google Sheets, or other online tools, to calculate the RTT position
error as a cumulative distribution function (CDF) over the entire path. A full description of the
WRL log file and the meaning of fields in its various records, is provided in Positioning Data Log
File Format.

Configuration File Format

Below is an example configuration file, which can be downloaded, copied and customized to
characterize your own positioning system. In particular, you should customize the building
layout, the positions of the APs, and GT points. The various parameters are described in the
format description that follows the example, and can be adjusted to suit your needs once you
have some experience with the default operation.

https://g.co/wifirtt/example-house-config

<Example-House-Config.csv file>

HAHHHH R R R AR

#

EXAMPLE HOUSE CONFIGURATION FILE (Single Level)

#

HAHHHH AR AR R R AR

#

PARAMETERS commonly updated by a user

#

PARAM,WIFI_SCAN_INTERVAL_SECS,15.0
PARAM, RTT_MIN_INTERVAL_SECS,®.33
PARAM, FLP_PERIOD_SECS,5.0
PARAM,MAP_INITIAL_ ZOOM,20.98
PARAM, IS_RANGE_IN_METERS,true

PARAM,MOBILE_CARRY_HEIGHT_METERS,1.0

PARAM, POSITION_ELPF_DISCOUNT_FACTOR,1.0
PARAM, LOG_LEVEL, @

#

PARAMETERS (Advanced)

#

PARAM, FILTER_MIN_RANGES_NEEDED, 3
PARAM, FILTER_MAX_RANGES_USED, 5
PARAM,MAX_APS_IN_RTT_SCAN,6
PARAM, RTT_CALIBRATION_OFFSET_METERS,0.5
PARAM,RTT_CALIBRATION_SLOPE,®.92
PARAM, HISTORY_RANGE_TIME_TO_LIVE_SECS,5.0
PARAM,HISTORY_LINEAR_DISCOUNT FACTOR,®.2
PARAM, RTT_MIN_DISTANCE_LIMIT_METERS,0.0
PARAM,RTT_MAX_DISTANCE_LIMIT_METERS,30.0
PARAM, RANGE_AVERAGING_WINDOW_SECS,60.0
PARAM,MAX_ALLOWED_POSITION ERROR_METERS,5.0

#

BUILDING Floor Plan and Location

#

BD,Floor-Plan-1,37.358195,-122.071502,37.358354,-122.071271,1

#

AP Positions

#

AP,60:
AP,60:
AP,60:
AP,60:
AP,60:
AP,60:

#

B7:
B7:
B7:
B7:
B7:
B7:

GROUND

#

6E
6E
6E
6E
6E
6E

:9E
:9E
:9E
:D6:
:D6:
:D6:

TRUTH

:7E:
:82:
t7E:
26:
2D:

2E

26,37.
3B, 37.
1B,37.
96,37.
3F,37.
:7E,37.

358321,-122.
358219, -122.
358220, -122.
358200, -122.
358333,-122.
358343,-122.

(GT) Positions

071277,RTT-20H-1,2.
071279,RTT-20H-2,2.
071372,RTT-20H-3,2.
071499,RTT-20H-4,2.
071458,RTT-20H-5,2.
071409,RTT-20H-6,2.

5,1,Floor-Plan-1,1living-room
5,1,Floor-Plan-1,office
5,1,Floor-Plan-1,dining-room
5,1,Floor-Plan-1,garage
5,1,Floor-Plan-1,master-bedroom
5,1,Floor-Plan-1,kitchen

GT,0,0,37.358326,-122.071290,1.0,0.1,POINT-A
GT,0,0,37.358326,-122.071395,1.0,0.1, POINT-B
GT,0,0,37.358267,-122.071383,1.0,0.1,POINT-C
GT,0,0,37.358267,-122.071358,1.0,0.1,POINT-D
GT,0,0,37.358289,-122.071358,1.0,0.1, POINT-E
GT,0,0,37.358289,-122.071290,1.0,0.1,POINT-F

<end-of-file>

Example of Multi Floor setup in v1.2 and optimizations in v1.8
<Example-House-2-Floor-Config.csv file>

B S S S RS S
#

EXAMPLE HOUSE CONFIGURATION FILE (Dual level)

#

B B R S SSS SrSrS

#

PARAMETERS commonly updated by a user
#

PARAM,WIFI_SCAN_INTERVAL_SECS,15.0

PARAM, RTT_MIN_INTERVAL_SECS,0.33

PARAM, FLP_PERIOD_SECS,5.0
PARAM,MAP_INITIAL_ZOOM, 20.98

PARAM, IS_RANGE_IN_METERS, true
PARAM,MOBILE_CARRY_HEIGHT_METERS,1.0
PARAM, POSITION_ELPF_DISCOUNT_FACTOR,1.0
PARAM, LOG_LEVEL,®

#

PARAMETERS (Advanced)

#

PARAM, FILTER_MIN_RANGES_NEEDED, 3

PARAM, FILTER_MAX_RANGES_USED, 5
PARAM,MAX_APS_IN RTT_SCAN,6

Note calibration offset changed to @ as automated in the v1.8 param
PARAM, RTT_CALIBRATION_OFFSET_METERS,®
PARAM, RTT_CALIBRATION_SLOPE,0.92
PARAM,HISTORY_RANGE_TIME_TO LIVE_SECS,5.0
PARAM,HISTORY_LINEAR_DISCOUNT_FACTOR,©0.2
PARAM, RTT_MIN_DISTANCE_LIMIT_METERS,0.0
PARAM, RTT_MAX_DISTANCE_LIMIT_METERS,30.0
PARAM, RANGE_AVERAGING_WINDOW_SECS,60.0
PARAM, MAX_ALLOWED_POSITION_ERROR_METERS,5.0
Params available from V1.8
PARAM,OPTIMIZE_WIFI_SCAN, true

PARAM, ACCESS_POINT_FREQUENCY_LIST,5180:5745
PARAM, AUTO_REMOVE_CALIBRATION_OFFSET, true
PARAM,NG_MEDIAN_WINDOW, 180

#
PARAMETERS (Multiple Floor Support)

10

#

Parameter that must be enabled.
PARAM, ENABLE_LEVEL_CHANGE, true

Recommended parameter for smoother level-change.
Turning this on may consume more power.
PARAM, ENABLE_BAROMETER_SENSOR, true

The other level change parameters can be left at their default values.
For more parameter information read the “Parameters” overview section below.

#

BUILDING Floor Plan and Location

#
BD,Floor-Plan-1,37.358195,-122.071502,37.358354,-122.071271,1

#

Floor #1 AP Positions

#

AP,60:B7:6E:9E:7E:26,37.358321,-122.071277,RTT-20H-1,2.5,1,Floor-Plan-1,1living-room
AP,60:B7:6E:9E:82:3B,37.358219,-122.071279,RTT-20H-2,2.5,1,Floor-Plan-1,o0ffice
AP,60:B7:6E:9E:7E:1B,37.358220,-122.071372,RTT-20H-3,2.5,1,Floor-Plan-1,dining-room
AP,60:B7:6E:D6:26:96,37.358200,-122.071499,RTT-20H-4,2.5,1,Floor-Plan-1,garage
AP,60:B7:6E:D6:2D:3F,37.358333,-122.071458,RTT-20H-5,2.5,1,Floor-Plan-1,master-bedroom
AP,60:B7:6E:D6:2E:7E,37.358343,-122.071409,RTT-20H-6,2.5,1,Floor-Plan-1,kitchen

Add the 2nd floor with the same dimensions as the first, although it can be different.

The building layout string (Floor-Plan-2) must be used as the building layout string for all
APs on this floor. In addition, an overlay with the same name with a .png extension (e.g.

Floor-Plan-2.png) must be provided after loading this CSV file

#

BD,Floor-Plan-2,37.358195,-122.071502,37.358354,-122.071271,1

#

Floor #2 AP Positions

#

AP,60:B7:6E:9E:7E:26,37.358331,-122.071277,RTT-20H-7,2.0,2,Floor-Plan-2,Upstairs Bedroom 1
AP,60:B7:6E:9E:82:3B,37.358229,-122.071279,RTT-20H-8,2.0,2,Floor-Plan-2,Upstairs Bedroom 2

GROUND TRUTH (GT) Positions

Uses new v1.2 feature where the 2nd field is used to indicate the overlay map used
for the GT point. In this case, 3 points are on Floor-Plan-1 followed by 2 points on
Floor-Plan-2 and then a last point on Floor-Plan-1.

H ¥ O OH B H

GT,0,Floor-Plan-1,37.358326,-122.071290,1.0,0.1,POINT-A
GT,0,Floor-Plan-1,37.358326,-122.071395,1.0,0.1,POINT-B
GT,0,Floor-Plan-1,37.358267,-122.071383,1.0,0.1,POINT-C
GT,0,Floor-Plan-2,37.358267,-122.071358,1.0,0.1,POINT-D
GT,0,Floor-Plan-2,37.358289,-122.071358,1.0,0.1,POINT-E
GT,0,Floor-Plan-1,37.358289,-122.071290,1.0,0.1,POINT-F

11

<end-of-file>
Explanation of Configuration File Records

BUILDING

BD,<layout-file-name>,<SW-lat>,<SW-Ing>,<NE-lat>,<NE-Ing>,<Floor>

Example
BD, Floor-Plan-1, 37.430887, -121.92155, 37.431065, -121.920991,1
Field # | Field Name Type Function
0 BD string Record key BD = Building
1 Building Layout | string Building name, encoded with floor number (eg.

“Floor-Plan-1”. This should match the layout file
name, but shouldn’t include the .png suffix.

New in v1.2

Multi-level floor plans are now available. You can
specify multiple floors for the same building as
separate BD lines. This “Building Layout’ string
should be used in the AP descriptions below to
identify which APs are on which floor.

Note: for each building layout string, a
corresponding overlay file (with the exact same
name and a .png extension) must be provided
during the overlay file selection dialog.

2 SW Latitude float Latitude of SW corner in degrees

3 SW Longitude | float Longitude of SW corner in degrees

4 NE Latitude float Latitude of NE corner in degrees

5 NE Longitude float Longitude of NE corner in degrees

6 Floor string Floor number, such as 1, or label, such as 4a

Note: this field is just used for your own records. It is
not used by the new level-change routines. Those
routines use the building layout string as described
above.

12

ACCESS POINT

AP,<bssid>,<lat>,<Ing>,<name>,<height_m>,<floor_label>,<building_layout>,<location_label>,<
OPTIONAL: channel frequency>

Example
AP, 3C:28:6D:78:AC:2E, 37.4163339, -122.0825435,RTT6-01,3.0,1,Floor-Plan-1,office,5180

Field # | Field Name Units Function
0 AP string Record key AP = Access Point
1 BSSID string Basic Service Set IDentifier: an AP’s 48-bit MAC

address. Format: xx:xx:xx:xx:xx:xx (x=hex digit)

2 Latitude float Latitude in degrees. If LCI location information is
enabled in the Access Point, this can be left as 0.0
degs and will be filled in automatically. New in V1.8

3 Longitude float Longitude in degrees. If LCI location information is
enabled in the Access Point, this can be left as 0.0
degs and will be filled in automatically. New in V1.8

4 Name string Unique name for AP
5 Height float Distance above floor in meters
6 Floor string Floor number, such as 1, or label, such as 4a

Note: this field is just used for your own records. It is
not used by the new level-change routines. Those
routines use the building layout string as described
below.

7 Building Layout | string Building name, encoded with floor number (such as
“Floor-Plan-1”. This should match the corresponding
entry in the BD record definition, and the layout file
name, but shouldn’t include the .png suffix.

New in v1.2

In v1.2, this building layout overlay string is used to
determine if the user is still on the same floor, or has
moved floors. Every AP on the same floor needs to
have the same Building Layout string. It does not
matter what the string is, but every AP must share
the same string. APs with different strings are
considered to be on different floors. The building
layout string must match what was defined in the
corresponding BD entry above.

13

The v1.2 app will only range to APs located on the
same floor, unless the app determines that the user
is switching floors. In this case, the app will range to
all nearby APs to determine which floor the user is
currently on.

8 Location string Human-readable label for the location, such as
room or area name for reference
9 Frequency integer New in v1.8
(Option The center frequency of the primary 20 MHz
al) frequency (in MHz) of the channel the access point
is using.
GROUND TRUTH

GT,<0>,<overlay label> <latitude>,<longitude>,<altitude>,<error>,<location_label>

Example
GT,0,Floor-Plan-1,37.4218452,-122.0859171,100.0,1.0,Waypoint-C
Field # | Field Name Units Function
0 GT string Record key GT = Ground Truth
1 0 Reserved -
2 Overlay Label | string New in v1.2
Overlay used to display this GT point. This can be
used to put GT points on different floors.
Set to 0 to disable this feature.
3 Latitude float Latitude in degrees
4 Longitude float Longitude in degrees
5 Altitude float Altitude in meters (WGS84 standard)
[Not currently used]
6 Error float Estimated horizontal std. error in meters
7 Location string Human-readable label for the location

14

PARAMETER

PARAM,<parameter_key>,<parameter_value>

Example
PARAM, WIFI_SCAN_INTERVAL_SECS, 30.0
Field # | Field Name Type Function
0 PARAM string Record key PARAM = Parameter
1 parameter_key string Configuration parameter key to be set at startup.
These are recorded in the data log file.
2 parameter_value | variable Value the parameter key is set to.

SUMMARY OF PARAMETER KEY NAMES USED (Parameters use default values if not set)

PARAMETER NAME Default | Type Function
WIFI_SCAN_INTERVAL_SECS 15.0 float Time between Wi-Fi Scans seconds
RTT_MIN_INTERVAL_SECS 0.35 float Min Time between RTT Scans seconds
RTT_CALIBRATION_OFFSET_METERS 0.5 float Correction bias meters subtracted from range.
RTT_CALIBRATION_SLOPE 0.92 float Range slope correction (no units) multiplied by
the range after bias (above) is subtracted.
HISTORY_RANGE_TIME_TO_LIVE_SECS | 5.0 float Range history time-to-live in seconds for each AP
being ranged. Used when ranging errors occur.
HISTORY_LINEAR_DISCOUNT_FACTOR | 0.2 float Linear weighting for history (no units)
FILTER_MIN_RANGES_ NEEDED 3 integer Min ranges used to find a position
FILTER_MAX_RANGES_USED 4 integer Max ranges used to find a position
MAX_APS_IN_RTT_SCAN 6 integer Max number of APs in an range request up to the
limit specified by Android (10 in Android S/T)
MOBILE_CARRY_HEIGHT _METERS 1.0 float Height carried above floor in meters
RTT_MIN_DISTANCE_LIMIT_METERS 0 float Min range estimate in meters
RTT_MAX_DISTANCE_LIMIT_METERS 30 float Max range estimate (or reject) in meters

15

LOG_LEVEL

hex

Logcat Level (see table below)

IS_RANGE_IN_METERS

false

boolean

Centimeters: false, Meters: True
This determines the units for the RTT position
output as described in the RTT format table.

FLP_PERIOD_SECS

5.0

float

Time between FLP estimates.
Range: 2.0 - 10.0 seconds

MAP_INITIAL_ZOOM

2.98

float

Map Zoom factor to show overlay map

POSITION_ELPF_DISCOUNT_FACTOR

1.0

float

Discount, or Smooth Factor, for Exponential Low
Pass Filter Value: 0.0 (max filter) to 1.0 (no filter)
(no units)

MAX_ALLOWED_POSITION_ERROR_METERS

5.0

float

If the position error is greater than this value, no
position is returned for the current set of ranges.
Max error value is in meters.

New in v1.2

PARAMETER NAME

Default

Type

Function

ENABLE_LEVEL_CHANGE

false

boolean

Top level switch to enable the level change
capability. true = on, false = off

Note: when level change is enabled, the
Floor identification string in the AP and BD
records are compared to determine the set
of APs used for ranging. If the values don’t
match, the APs will not be part of the
ranging set, even if they are on the same
floor. The only exception is when a level
change is detected. In that case, the app
will range to the nearest APs (regardless of
floor) to determine where it is.

ENABLE_BAROMETER_SENSOR

false

boolean

true: use the barometer for level change
detection
false: turn off the barometer.

Note: when true, new barometer value
entries are added to the log file. See
Barometer entry in the log file details below.

LEVEL_CHANGE_MIN_RTT_RANGE_FAIL
URES_THRESHOLD

No
default

integer

The minimum absolute number of RTT
ranging failures that must occur before a
floor change is detected. This parameter, if
set, overrides the percentage value below.

LEVEL_CHANGE_MIN_RTT_RANGE_FAIL
URES_PERCENTAGE

0.8

float

The minimum (fractional) percentage of
RTT ranging failures that must occur before
a floor change is detected. This parameter

16

https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Exponential_smoothing

is only used when a more specific threshold
value (see parameter above) is not set.

E.g., 0.1=10%, 0.01 = 1%, 0.5 = 50%

LEVEL_CHANGE_MIN_RTT_STDEV_ERR
OR_THRESHOLD

3.0

float

When the barometer is not used, the app
will also use the RTT standard deviation
error as an indicator of floor change. This
parameter controls the minimum error
threshold at which a floor change is
detected. This parameter is not used when
the barometer is active as the barometer is
much more precise than using the standard
error. This parameter is used when the
barometer is not active, as it can trigger
faster than using just the RTT ranging error,
and Wi-Fi scan results. However, it is
disabled when the barometer is active as it
can cause false positives in weak Wi-Fi
signal areas.

LEVEL_CHANGE_MIN_WIFI_SCAN_OTH
ER_FLOOR_AP_COUNT THRESHOLD

No
default

integer

The minimum absolute number of APs that
are on a different “Floor” (as defined in the
AP definition above) from the user. When
this threshold is reached, the floor change
routines are activated. This parameter, if
set, overrides the percentage value below.

LEVEL_CHANGE_MIN_WIFI_SCAN_OTH
ER_FLOOR_AP_COUNT_PERCENTAGE

0.5

float

The minimum (fractional) percentage of
APs that are on a different “Floor” (as
defined in the AP definition above) from the
user. When this percentage is reached, the
floor change routines are activated. This
parameter is only used when a more
specific threshold value (see parameter
above) is not set.

E.g., 0.1=10%, 0.01 = 1%, 0.5 = 50%

LEVEL_CHANGE_DETECTION_MAX_RO
UNDS_TO_REPEAT

10

integer

When a floor change is detected, the app
will enter a mode where it scans all nearby
APs (regardless of their floor) to determine
the floor the user is currently on. This
parameter determines how long this mode
will be active.

LEVEL_CHANGE_RSSI_ARRAY_MAX_LE
NGTH

10

integer

The app keeps track of the AP with the
strongest RSSI to determine the current
floor - it assumes it is on the same floor as
the APs with the strongest RSSI over the
last N readings. This parameter sets the
value of N.

LEVEL_CHANGE_RTT_ARRAY_MAX_LEN
GTH

10

integer

The app keeps track of the AP with the
smallest RTT range to determine the

17

current floor — the app assumes it is on the
same floor as the APs with the smallest
RTT ranges over the last N readings. This
parameter sets the value of N. The RTT
range takes precedence over the RSSI
value (above), and in the event of a tie.

LEVEL_CHANGE_RELATIVE_BAROMETE
R_PRESSURE_MIN_THRESHOLD

0.175

float To determine a floor change using the
barometer, the app uses the change in
relative pressure (hPa) seen over a small
time window, and compares it to the relative
pressure seen over a longer time window. If
the difference is large enough, the user has
changed elevations indicating a floor
change. This parameter determines the
minimum pressure-difference between the
two time windows before a floor change is
detected.

LEVEL_CHANGE_BAROMETER_SHORT _
WINDOW_ARRAY_MAX_LENGTH

integer | The length of the short window (in seconds)
used to calculate a relative pressure
change.

LEVEL_CHANGE_BAROMETER_LONG_
WINDOW_ARRAY_ MAX_LENGTH

30

integer | The length of the long window (in seconds)
used to calculate a relative pressure
change.

New in v1.8

PARAMETER NAME

Default

Type Function

OPTIMIZE_WIFI_SCAN

false

boolean true: enable Wi-Fi scan
optimization.

false: disable Wi=Fi scan
optimization.

This can be turned on if the
frequencies of APs are known in
advance. The frequencies can be
provided as a list of integers in
ACCESS_POINT_FREQUENCY_L
IST, or specified in each AP record.
Once configured, the app will only
perform one Wi-Fi scan each time
positioning is started, eliminating
pauses due to Wi-Fi scans during
navigation.

ACCESS_POINT_FREQUENCY_LIST

5180:5745 | colon The list of channel frequencies

separated used for Wi-Fi scan optimization.
integers Each integer is the center
frequency of the primary 20 MHz
frequency (in MHz) of the channel

18

the access point is using.

AUTO_REMOVE_CALIBRATION_OFFSET | false

boolean

true: enable automatic calibration
error removal.

false: disable automatic calibration
error removal.

Estimate calibration errors together
with positions, and remove the
errors automatically.

NG_MEDIAN_WINDOW 1

integer

The size of the bounding window
for calculating the running median
of estimated calibration errors.

Note: the default window size is 1,
which is equivalent to using the
latest estimated calibration error
(i.e. not using the running median).
A suitable value for us with the
running media window is 180.

LOG LEVEL DESCRIPTION (defines what appears in logcat)

Log Levels can be added together to combine log functions (controlled by bit position)
E.g. PARAM,LOG_LEVEL,7 turns on Basic stats + Status with key + AP scanning logging

Log Level (hex) | Function Log Level (hex) | Function
0 (default) Minimal logging (for example, 08 FLP position data
exceptions)
01 Basic status 10 RTT position data
02 Status with key/values 20 RTT range data
04 Access point scanning 40+ Reserved

Positioning Data Log File Format

Explanation of Log File Records

PHONE_VERSION

PHONE_VERSION, <build_id>

19

Example

PHONE_VERSION,google/redfin/redfin:12/SP2A.220505.002/8353555:userdebug/dev-keys

Field # | Field Name Type Function

0 PHONE_VERSION | string Record key PHONE_VERSION

1 Build Id string Device model name and build ID of the
version of Android running on the phone.

APP VERSION

APP_VERSION, <build_date-version>

Example

APP_VERSION,220410-V1.2

Field # | Field Name Type Function
0 APP_VERSION string Record key APP_VERSION (application version)
1 Build date-version string App build <YYMMDD>-V<version-id>

ACCESS POINT

Note: This information is similar to data in the ap_location.csv file, which is duplicated in some
fields here to allow the data log to be self contained, and to include the AP reference points.

AP, <status>,<time>,<bssid>,<name>,<lat>,<Ing>,<altitude>,<height>,<error>,<floor><building_|
ayout><location_label>

Example

AP,0,0,3¢:28:6d:98:b9:5d,RTT-P6-33,37.4160061,-122.08297,-1.0,2.8,0.1,6,PLYMOUTH-1625-
6,0ffice

Field # | Field Name Type Function

0 AP string Record key AP = Access Point

20

1 Status int O=operational, -1 decommissioned

2 Time int 0 (time the AP information was read)

3 BSSID string Basic Service Set ID: an AP’s 48-bit MAC address.
Format: xx:xx:xx:xx:xx:xx (x=hex digit)

4 Name string Unique name of AP

5 Latitude float Latitude in degrees (from config or LCI)

6 Longitude float Longitude in degrees (from config or LCI)

7 Altitude float Altitude in meters (WGS84 standard); obtained
from Android’s Fused Location Provider

8 Height float Distance above floor in meters

9 Error float Estimated horizontal std. error in meters

10 Floor string The label used to describe a floor

11 Building layout | string The building layout file name (+ floor suffix)

12 Location string Human-readable name for the location

PARAMETERS

These are the values of the parameters read in from the input CSV. Any parameter not listed will
have the default values listed in the parameter table provided earlier.

PARAM,<status>,<time>,<key>,<value>

Example

PARAM,0,0,MAX_APS_IN_RTT_SCAN,8

Field # | Field Name Units Function

0 PARAM string Record key PARAM = Parameter

1 Status int 0 (meaning operational parameter)

2 Time int 0 (time the parameter was applied)

1 Parameter key string Configuration parameter key set at startup
2 Parameter value | string Value the parameter key is set to

21

INIT TIME
INIT_TIME, <timestamp_in_ms>

Example

INIT_TIME, 1651097864144

Field # | Field Name Units Function

0 INIT_TIME string Record key INIT_TIME = Initialisation time for the
RTT, FLP, LE records. All time values for those
records will be relative to this base value

ROUND TRIP TIME (RTT) RANGE ESTIMATE

RTT,<status>,<time>,<bssid>,<rssi>,<distance>,<distance_std_dev>,<-1>,<-1> <burst_size>,<
burst_successes>,<-1>

Example

RTT,0,14725,3¢:28:6d:7d:¢c3:f0,-59,250,16,-1,-1,8,7,-1

Field # | Field Name Units Function

0 RTT string Record key RTT = Round Trip Time

1 Status int Return code (0 = success)

2 Time int Time the measurement was made in millisecs

since “Start RTT Positioning”. This value is
relative to the base value provided by

INIT_TIME
3 BSSID string 802.11mc Access Point MAC address
4 RSSI int Received Signal Strength in dBm
5 Distance int / float Estimated distance cm or meters

(See PARAM “IS_RANGE_IN_METERS”)

6 Distance std. dev. int / float Standard deviation cm or meters
(See PARAM “IS_RANGE_IN_METERS”)

7 -1 reserved Reserved

22

8 -1 reserved Reserved

9 Burst Size int Number of frames transmitted in a burst
10 Burst Successes int Number of frames acked successfully
11 -1 reserved Reserved

LOCATION ESTIMATE (w/ RTT)

LE, <status>,<timestamp_ms>,<lat>,<Ing>,<altitude>,<standard deviation>

Example

LE,0,14725,37.4160953,-122.0825995,1.0,0.83

Field # | Field Name Type Function

0 LE string Record key LE = Location Estimate (from RTT)

1 Status int Return code (0: Success, non-zero: Fault)

2 Time int Time the measurement was made in milliseconds.
This value is relative to the base value provided by
INIT_TIME

3 Latitude float Latitude in degrees

4 Longitude float Longitude in degrees

5 Altitude float Altitude in meters (WGS84 standard); obtained
from Android’s Fused Location Provider

6 Error float Estimated horizontal sd error in meters

FUSED LOCATION PROVIDER (FLP) ESTIMATE
FLP,<status>,<time> <lat> <Ing>,<altitude>,<error>

Example

FLP,0,14725,37.4160749,-122.0824975,-5.20,5.70

23

Field # | Field Name Units Function

0 FLP string Record key FLP = Fused Location Position

1 Status int Return code (0: Success)

2 Time int Time the measurement was made in milliseconds.
This value is relative to the base value provided by
INIT_TIME

3 Latitude float Latitude in degrees

4 Longitude float Longitude in degrees

5 Altitude float Altitude in meters (WGS84 standard)

6 Error float Estimated horizontal std. dev. error in meters

ROUND TRUTH

GT,<status>,<time> <latitude>,<longitude>,<altitude>,<error>,<location_name>

Example

GT,0,20421,37.4160929,-122.0826701,1.0,2.0,POINT-B

Field # | Field Name Units Function

0 GT string Record key GT = Ground Truth

1 Status int Return code

2 Time int Time the measurement was made in milliseconds
3 Latitude float Latitude in degrees

4 Longitude float Longitude in degrees

5 Altitude float Altitude in meters (WGS84 standard)

6 Error float Estimated horizontal sd error in meters

7 Location string Human-readable name for the location

24

New in v1.2

SENSORS INIT TIME

SENSORS_INIT_TIME,<timestamp_in_ms>

Example

SENSORS_INIT_TIME, 1651097860620

Field # | Field Name Units Function
0 SENSORS_INI | string Record key SENSORS_INIT_TIME = Initialisation
T_TIME time for all sensor records. E.g. BARO records. All
time values for those records will be relative to this
base value
Barometer

BARO,<status>,<app_time>,<sensor_time>,<pressure>

Example

BARO,0,8600,175506677033410,1013.5179

Field # | Field Name Units Function

0 BARO string Record key BARO = Barometer

1 Status int Return code

2 App Time int Time the measurement was read in the app in
milliseconds. This value is relative to the base
value provided by SENSORS_INIT_TIME

3 Sensor Time int Time measurement was made as recorded by the
sensor in nanoseconds

4 Pressure float Barometric pressure in hPa

25

Wi-Fi RTT Locator (WRL) © 2023 Google Inc.

Data Log Analysis

The RTT logs can be analyzed with the POLAR webtool. It allows you to see the RTT estimated
path, and the ground truth path, superimposed on the floorplan. Further, the tool will provide an
estimate of the position error plotted as a Cumulative Distribution Function (CDF) over the
recorded path. Three kinds of CDF are generated: 1) Euclidean error, 2) Cross Track error
(X-TRK) and 3) Along Track error (A-TRK).

The tool can be accessed using the URL: https://polar.webapps.google.com

When accessing the site you will be presented with the Home tab overview (Fig. 3a), a Map tab
(3b) allowing you to upload a log file and floorplan, a Process tab (3c) to see the ground truth
path (green), estimated path (blue) and AP positions (yellow). Finally, the Metrics tab (3d) shows
various analytic tables, and a CDF of the track errors, when you scroll to the bottom of the page.

Welcome to POLAR! Welcome to POLAR!

Home Map Process Metrics Home Map Process Metrics

POLAR is a set of web tools that provide metrics for developers of mobile POLAR WiFi Data and Map Upload
WIFi RTT applications, enabling precise indoor location at ~1-2m. Android

currently has three applications in the Play store that allow developers to Upload log file and floor plan image to visualize log file data.

experience the performance of WiFi RTT on their smartphones:

WifiRttLocator, WifiRttScan and WifiNanScan.

Upload log file: Choose File |No file chosen

These applications generate log files that can be compared against ground
truth to determine the accuracy of the position data. The POLAR tools will Upload floor plan: Choose File |No file chosen

allow any developer around the world to upload these log files and display

useful performance metrics which can be used to assess the accuracy of a

WIFi (802.11mc) deployment when interacting with a particular phone

model.
Fig 3a: Home Page Fig 3b: Polar Map Page
Welcome to POLAR! Welcome to POLAR!
Home Map Process Metrics o
Home Map Process Metrics
Process Map Visuals
@ Ground Truth Path DPLE Path (Blue) OIFLP Path (Black) LogFile Metrics
This page displays the error calculations in meters based on the data in the log file. Use the slider to select which part
B Access Points DOGrid (2m x 2m)

of the data will be used.

HHHHH

Metrics Coverage: 100%

e @100

Map Satelite

Each data point from the PLE path and the FLP path has a euclidean distance, cross track distance, and an along track error distance
from their interpolated data point on the ground truthine.

Filter Metrc Laster (m) Augere (m) Stderr () Varrr ()
PLE Eucld 0s4 192 1.63 266
PLE Xtk 069 0 037 a1
PLE At 063 174 7 201

Fig 3c: Process Fig 3d: Metrics

26

https://polar.webapps.google.com

Conclusion

The Wi-Fi RTT Locator (WRL) application has been designed to help developers understand the
accuracy and properties of Wi-Fi RTT positioning by itself, that is, without help from an Inertial
Management Unit (IMU) or additional radio technology. Fusion of Wi-Fi RTT with other
technologies can improve its accuracy further, but that is not the goal of this test application. We
do, however, provide a post-positioning filter based on the Exponential Low Pass Filter (ELPF),
configured off by default, but can be enabled using the POSITION_ELPF_DISCOUNT_FACTOR
parameter, with a value less than 1.0 and greater than 0.0. More effective filters such as a
Particle Filter or Kalman Filter are recommended for full system solutions. Use of alternate filters
for positioning can also be evaluated by post-processing the data log file.

We hope you find this application useful for understanding and experimenting with Wi-Fi RTT
positioning based on the IEEE 802.11mc standard, and that it inspires you to build applications
customized to your precise indoor-positioning needs.

References

1. Pixel Phones: Models: Pixel 4, 4XL, 4a (5G), 5, 5a (5G), 6, 6 Pro, 7, 7 Pro
https://store.google.com/us/category/phones?hl=en-US

2. Google Wi-Fi 2020: with IEEE 802.11mc (RTT):
https://store.google.com/us/product/google wifi 2nd gen?hl=en-US

3. Wi-Fi RTT Video: How to get one-meter location-accuracy from Android devices
GooglelO’18 video presentation on Precise Indoor Location using W-Fi RTT.

27

https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Particle_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://store.google.com/us/category/phones?hl=en-US
https://store.google.com/us/product/google_wifi_2nd_gen?hl=en-US
https://www.youtube.com/watch?v=vywGgSrGODU&t=272s

